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1. INTRODUCTION

In this paper we blend two different approaches to the study of the
properties of various classes of Tchebycheff systems and the linear spaces
they generate.

One approach, developed by the first two authors, consists in studying
these systems from the point of view of the Total Positivity of their colloca-
tion matrices, and it is mainly, but not exclusively, matrix-algebraic in
nature.

The second approach is for the most part analytic. Its key feature is the
concept of relative differentiation introduced by Zielke (cf., e.g., [23, 24]).
Although sometimes implicitly, this idea has influenced much of the recent
work in the area.

In Section 2 we obtain splicing theorems for Markov and STP-systems,
and Section 3 contains the same type of result for weak Markov and
TP-systems. The methods used are purely algebraic, and are based on results
and techniques developed by Carnicer and Pen~ a in [3, 4]. The theorems
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proved in these sections extend those previously obtained by Kilgore and
Zalik [11] to a situation of such generality, that it is unlikely that they can
be improved much further.

In Sections 4 and 5 we use the splicing results of the previous sections,
combined with results and techniques developed by Zalik [16, 20], and
Zielke [24], to obtain theorems on the extensibility of Tchebycheff and
Weak Tchebycheff systems to a larger domain. These results generalize
parts of the earlier work of Carnicer and Pen~ a [3, 4], Sommer and Strauss
[13], and Zalik and Zwick [18, 21].

In Sections 6 and 7 we use results from Sections 4 and 5 to give various
characterizations of STP and TP-systems, and to obtain new integral
representation theorems for Markov and weak Markov systems. The proofs
of these representation theorems make use of [20, Theorem 1], whose
original statement contains a small typographical error. See Remark 4.8
below for a corrected statement.

For surveys of recent results in the theory of T-systems and spaces, the
reader is referred to [4, 22].

In the sequel, A, B, C, and D will denote subsets of the real numbers, |A|
will denote the cardinal of A, F(A) will denote the set of all real-valued
functions defined on A, and Un :=(u0 , ..., un) will denote an ordered
sequence of functions, also called a system. By abuse of notation we shall
write Un /F(A), instead of ui # F(A), 0�i�n. Finally, S(Un) will denote
the linear span of the set [u0 , ..., un]. Given a set B, we use the following
notation: b1 := inf(B), b2 := sup(B), B0 := B"[b1 , b2], b0

1 := inf(B0),
b0

2 :=sup (B0).

Definition 1.1. (i) b1 :=inf(B) is a density point of B if inf(B0) � B0 .

(ii) b2 :=sup(B) is a density point of B if sup(B0) � B0 .

Thus, for example, 0 is a density point of [0] _ (1, 2), but is not a den-
sity point of [0] _ [1, 2).

Definition 1.2. Let f # F(B), and assume that for i=1 or i=2, bi is a
density point of B. Then

lim
x � bi

f (x) := lim
x � bi

0
f (x),

and f (x) is continuous at bi if

lim
x � bi

f (x)= f (bi).

412 CARNICER, PEN� A, AND ZALIK



File: DISTIL 313203 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 3217 Signs: 2315 . Length: 45 pic 0 pts, 190 mm

2. SPLICING THEOREMS FOR MARKOV AND STP-SYSTEMS

Definition 2.1. A matrix A is called totally positive (TP) if all the
minors of A are nonnegative. A is called strictly totally positive (STP), if
all the minors of A are strictly positive. A lower (upper) triangular square
matrix A is called 2-strictly totally positive (2STP) if all minors of A

using rows :1 , ..., :k and columns ;1 , ..., ;k , with :i�;i (:i�;i) for all i,
are strictly positive.

Definition 2.2. A system of functions Un / F (A) is called a
Tchebycheff system or T-system (weak Tchebycheff system or WT-system)
if |A|�n+1, the functions in Un are linearly independent on A, and all the
determinants of the square collocation matrices

M \u0 , ..., un

t0 , ..., tn + :=(uj (ti); 0�i�m, 0� j�n) (2.1)

with t0< } } } <tn in A, are positive (nonnegative). Tchebycheff systems are
also called Haar systems. A system Un is called a Markov system (weak
Markov system) if Uk=(u0 , ..., uk) is a T-system (weak T-system) for each
k=0, 1, ..., n. Markov systems are also called Complete Tchebycheff systems
or CT-systems. If u0=1, we say that Un is normalized. If (ui0

, ..., uik
) is a

T-system (weak T-system) for all 0�i0< } } } <ik�n, 0�k�n, or equiv-
alently, if all the collocation matrices (2.1) are strictly totally positive, we
shall say that Un is a strictly totally positive system or an STP-system. If Un

is linearly independent and all the collocation matrices (2.1) are totally
positive we shall say that Un is a totally positive system or a TP-system.
The linear span of a T-system will be called a T-space, the linear span of
a Markov system will be called a Markov space, the linear span of a nor-
malized Markov system will be called a normalized Markov space, etc.

Remark 2.3. In the case of T-systems the requirement of linear inde-
pendence is, of course, redundant. STP-systems are also called Descartes
systems (cf. [9]). Every T-space defined on a set that contains neither its
infimum nor its supremum is a Markov space (cf., e.g., [3, 15]).

Definition 2.4. Given A, B/R, we say that A<B if a<b for every
a # A, b # B.

Lemma 2.5. Let A, B�R be such that A"B<A & B<B"A and
|A & B|�n. If Un&1 is a T-system on A _ B and un is a function defined on
A _ B such that Un is a T-system (WT-system) on A and Un is also a
T-system (WT-system) on B, then Un is a T-system (WT-system) on A _ B.
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Proof. We need to show that

det M \u0 , ..., un

{0 , ..., {n +>0 (�0) (2.2)

for any {0< } } } <{n in A _ B. If necessary, we may add points in A & B
until we obtain a sequence t0< } } } <tm in A _ B such that [{0 , ..., {n]�
[t0 , ..., tm] and t0 , ..., tk+n&1 # A and tk , ..., tm # B. Now, all minors of the
matrix

M \u0 , ..., un

t0 , ..., tm + (2.3)

using the first n&1 columns satisfy

det M \u0 , ..., un&1

tj0
, ..., tjn&1

+>0, 0� j0< } } } < jn&1�n,

because Un&1 is a T-system on A _ B. Furthermore, all (n+1)_(n+1)
minors of (2.3) using consecutive rows must use points tj , ..., tj+n , all of
them lying in A if j�k&1, or all of them lying in B if j�k, and so they
must be positive (nonnegative). From [10, Chap. 2, Theorem 3.2], all
(n+1)_(n+1) minors of (2.3) are positive (nonnegative). Therefore (2.2)
holds, and the conclusion follows. K

Theorem 2.6. Let A, B�R be such that A"B<A & B<B"A and
|A & B|�n. If Un /F(A _ B) is a Markov system on A and also a Markov
system on B, then it is a Markov system on A _ B.

Proof. We proceed by induction on n. If n=0, u0 must be positive on
A and also on B; thus u0>0 on A _ B. Let us assume that the result holds
for all systems with n functions, and let Un be a system of n+1 functions
which is a Markov system on each of the sets A and B. Then Un&1 will be
a Markov system on A and on B. Thus, by the induction hypothesis, it will
be a Markov system on A _ B. We may now apply Lemma 2.5 to deduce
that Un is a T-system on A _ B. K

Corollary 2.7. Let A, B�R be such that A"B<A & B<B"A and
|A & B|�n. If Un /F(A _ B) is an STP-system on A and also an
STP-system on B, then it is an STP-system on A _ B.

Proof. It is sufficient to show that for any i0 , ..., ik , k�n, such that
0�i0< } } } <ik�n, (ui0

, ..., uik
) is a Markov system on A _ B. Clearly

(ui0
, ..., uik

) is a Markov system on each of the sets A and B. Taking into
account that |A _ B|�n�k, the assertion follows from Theorem 2.6. K
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Remark 2.8. The previous corollary could also be proved by showing
that each collocation matrix of Un is STP, reasoning as in the proof of
Lemma 2.5. In this case, instead of using [10, Chap. 2, Theorem 3.2], we
would use Fekete's characterization of STP matrices: a matrix is STP if all
minors formed with consecutive rows are positive. This idea was suggested by
Professor A. Pinkus.

Using the preceding theorem we can prove:

Theorem 2.9. Let A, B�R be such that A"B<A & B<B"A and
|A & B|�n. If Un /F(A _ B) is an STP-system on A and a Markov system
on B, then it is an STP-system on A _ B.

Proof. We need to prove that each collocation matrix

M \u0 , ..., un

{0 , ..., {n + (2.4)

is STP for any {0< } } } <{n on A _ B. We may add points in A until we
obtain a sequence t0< } } } <tm in A _ B such that [{0 , ..., {n]�[t0 , ..., tm]
and t0 , ..., tn&1 # A. Let us see that M( u0 , ..., un

t0 , ..., tm
) is an STP matrix. By

Theorem 2.9 we only need to ensure the positivity of all minors involving
initial consecutive rows and consecutive columns and all minors involving
initial consecutive columns and consecutive rows.

All minors with initial consecutive columns and consecutive rows must
use points all of them lying on A or all of them lying on B, and therefore
they are positive because Un :=(u0 , ..., un) is STP on A and Markov on B.
Finally all minors using consecutive initial rows and consecutive columns
are positive because (u0 , ..., un) is STP on A. K

Remark 2.10. Note that the properties of Un on A and on B in the
previous theorem are not interchangeable; [1, t] is a Markov system on,
say, (&2, 2), and an STP-system on (1, 3), but it is not an STP-system on
(&2, 3).

3. SPLICING THEOREMS FOR WEAK MARKOV AND
TP-SYSTEMS

Definition 3.1. An m_n matrix A is positive sign consistent of order
k (SC+

k ), 1�k�n, if all k_k minors of A are nonnegative. The matrix A

is positive strictly sign consistent of order k (SSC+
k ) if all k_k minors of A

are positive.
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We shall use the following notation. Given k, n # N, k�n, we define
Qk, n :=[(:1 , ..., :k): :i # N, 1�:1< } } } <:k�n], and for :, ; # Qk, n ,
A[: | ;] is by definition the k_k submatrix of A containing rows num-
bered by : and columns numbered by ;.

Lemma 3.2. Let A be an m_m matrix and let B be an m_n matrix,
m�n. Then

(i) If A is TP and B is SC+
n , then AB is SC+

n .

(ii) If A is STP, B is SC+
n , and rank B=n, then AB is SSC+

n .

(iii) If A is lower triangular and 2STP, B is SC+
n , and the n_n

minor of B using initial rows is positive, then AB is SSC+
n .

(iv) If A is upper triangular and 2STP, B is SC+
n , and the n_n

minor of B using final rows is positive, then AB is SSC+
n .

(v) If A is nonsingular and TP, and B is SSC+
n , then AB is SSC+

n .

Proof. By Cauchy�Binet's formula we have, for any : # An, m :

det(AB)[: | 1, ..., n]= :
# # Qn , m

det A[: | #] det B[# | 1, ..., n]. (3.1)

Let us remark that in all cases A is TP and B is SC+
n . Thus

det A[: | #]�0, det B[# | 1, ..., n]�0, \# # Qn, k .

Therefore all terms of the sum in (3.1) are nonnegative. This implies that
(i) holds. To complete the proof, we shall show in each case that at least
one of the terms of the sum in (3.1) is positive.

(ii) Since rank B=n, there exists # # Qn, k such that det B[# | 1, ...,
n]>0. Since A is STP, det A[: | #]>0.

(iii) This follows from the observation that det A[: | 1, ..., n]>0 and
det B[1, ..., n | 1, ..., n]>0.

(iv) This follows from the observation that det A[: | m&n+1, ...,
m]>0 and det B[m&n+1, ..., m | 1, ..., n]>0.

(v) Reference [1, Corollary 3.8] implies that det A[: | :]>0. Since
B is SSC+

n , it follows that det B[: | 1, ..., n]>0. K

We now introduce some matrices that will be needed in the sequel. Let
Lk(=) be the k_k matrix
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\0
0+ 0 0 } } } 0

\1
0+ = \1

1+ 0 } } } 0

Lk(=) := b . . .
. . .

. . . b . (3.2)

b . . .
. . . 0

\k&1
0 + =k&1 } } } } } } \k&1

k&2+ = \k&1
k&1+

We note that lim= � 0 Lk(=)=Ik , where Ik is the k_k identity matrix.
Let us see now that Lk(=) is 2STP for all =>0. Indeed, since

Lk(=)=diag(1, =, ..., =k&1) Lk(1) diag(1, =&1, ..., =&(k&1)),

it is sufficient to show that Lk(1) is 2STP. However, Lk(1) is the colloca-
tion matrix of ( t

0), ( t
1), ..., ( t

k&1) at 0, 1, ..., k&1, i.e.,

Lk(1)=M \\
t
0+ , \ t

1+ , ..., \ t
k&1++ .

0, 1, ..., k&1

Since (( t
0), ( t

1), ..., ( t
k&1)) is a Markov system, all minors using initial

columns are strictly positive and, by [5, Theorem 3.1], the lower triangular
matrix Lk(1) is 2STP.

We also define

Uk(=) :=Lk(=)T, Pk(=) :=Lk(=) Uk(=). (3.3)

Clearly Uk(=) is an upper triangular 2STP-matrix, and by [5,
Theorem 1.1] Pk(=) is STP. Furthermore, lim= � 0 Uk(=)=Ik and
lim= � 0 Pk(=)=Ik .

The main result of this section is a consequence of the following auxiliary
proposition:

Lemma 3.3. Let A be an m_n matrix that satisfies the following
properties:

(i) All minors involving initial consecutive columns and rows, chosen
from those numbered 1, ..., k+l, are nonnegative.

417STRICTLY TOTALLY POSITIVE SYSTEMS



File: DISTIL 313208 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 2788 Signs: 1576 . Length: 45 pic 0 pts, 190 mm

(ii) All minors involving initial consecutive columns and rows, chosen
from those numbered k, ..., m, are nonnegative.

(iii) The submatrix formed with rows k, ..., k+1 has rank n.

Then all minors of A using initial consecutive columns are nonnegative.

Proof. We first note that (i) and (ii) imply that the submatrices
A[1, ..., k+l | 1, ..., r] and A[k, ..., m | 1, ..., r] are SC+

r , for all
r # [1, ..., n].

Let Q(=) be the m_m block diagonal matrix defined by

Q(=) :=diag(Ik&1 , Pl+1 , Im&k&l),

and let B(=) :=Q(=)A. Clearly Q(=) is TP, and therefore each of its sub-
matrices is TP.

Since

B(=)[1, ..., k+l | 1, ..., r]

=Q(=)[1, ..., k+l | 1, ..., k+l] A[1, ..., k+l | 1, ..., r],

and, moreover, Q(=)[1, ..., k+l | 1, ..., k+l] is TP and A[1, ..., k+l | 1, ..., r]
is SC+

r , we deduce from Lemma 3.2(i) that B(=)[1, ..., k+l | 1, ..., r] is
SC+

r for all r # [1, ..., n].
Similarly, since

B(=)[k, ..., m | 1, ..., r]=Q(=)[k, ..., m | k, ..., m] A[k, ..., m | 1, ..., r],

Q(=)[k, ..., k | k, ..., m] is TP an A[k, ..., m | 1, ..., r] is SC+
r , Lemma 3.2(i)

implies that B(=)[k, ..., m | 1, ..., r] is SC+
r for all r # [1, ..., n].

We also have

B(=)[k, ..., l | 1, ..., r]=Pl+1(=) A[k, ..., k+l | 1, ..., r].

The submatrix A[k, ..., k+l | 1, ..., r] is SC+
r and has rank r because, by

(ii) in the hypotheses, rank A[k, ..., k+l | 1, ..., n]=n. Taking into account
that Pl+1(=) is STP, we may apply Lemma 3.2(ii) and deduce that
B(=)[k, ..., k+l | 1, ..., r] is SSC+

r for all r # [1, ..., n].
Now, let K(=) be the m_m block diagonal TP matrix defined by

K(=) :=diag(Ik&1 , Lm&k+1(=)), and let C(=) :=K(=) B(=).
Since Lm&k+1(=) is lower triangular,

C(=)[1, ..., k+l | 1, ..., r]

=K(=)[1, ..., k+l | 1, ..., k+l] B(=)[1, ..., k+l | 1, ..., r].
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Since K(=)[1, ..., k+l | 1, ..., k+l] is TP and B(=)[1, ..., k+l | 1, ..., r] is
SC+

r , we deduce from Lemma 3.2(i) that C(=)[1, ..., k+l | 1, ..., r] is SC+
r

for all r # [1, ..., n].
On the other hand,

C(=)[k, ..., m | 1, ..., r]=Lm&k+1(=) B(=)[k, ..., m | 1, ..., r].

The matrix B(=)[k, ..., m | 1, ..., r] is SC+
r and det B(=)[k, ..., k+

r | 1, ..., r]>0 because B(=)[k, ..., k+l | 1, ..., r] is SSC+
r . Since Lm&k+1(=)

is lower triangular and 2STP we conclude from Lemma 3.2(iii) that
C(=)[k, ..., m | 1, ..., r] is SSC+

r , for all r # [1, ..., n].
Finally, let M(=) be the m_m block diagonal totally positive matrix

defined by M(=) :=diag(Uk+l , Im&k&l (=)) and let D(=) :=M(=) C(=).
Since Uk+l (=) is upper triangular

D(=)[k, ..., m | 1, ..., r]=M(=)[k, ..., m | k, ..., m] C(=)[k, ..., m | 1, ..., r].

Since M(=)[k, ..., m | k, ..., m] is a nonsingular TP matrix and C(=)[k, ...,
m | 1, ..., r] is SSC+

r , we deduce from Lemma 3.2(v) that D(=)[k, ..., m |
1, ..., r] is SSC+

r for all r # [1, ..., n].
On the other hand,

D(=)[1, ..., k+l | 1, ..., r]=Uk+l (=) C(=)[1, ..., k+l | 1, ..., r].

The matrix C(=)[1, ..., k+l | 1, ..., r] is SC+
r and det C(=)[k+l&r+1, ...,

k+l | 1, ..., r]>0 because C(=)[k, ..., m | 1, ..., r] is SSC+
r . Since Uk+l (=) is

upper triangular and 2STP, Lemma 3.2(iv) implies that D(=)[1, ...,
k+l | 1, ..., r] is SSC+

r .
We have therefore shown that all minors involving consecutive rows

and initial consecutive columns of the matrix D(=) are strictly positive.
From [10, Chap. 2, Theorem 3.1] we conclude that all minors of D(=)
involving initial consecutive columns are strictly positive. Since D(=)=
M(=) K(=) Q(=)A and M(=), K(=), Q(=) converge to the identity matrix as
= tends to 0, we deduce that A=lim= � 0 D(=). Thus, all minors of A

involving initial consecutive columns are nonnegative. K

Theorem 3.4. Let A, B�R be such that A"B<A & B<B"A. Let
Un /F(A _ B) be linearly independent on A & B. If Un is a weak Markov
system on A and a weak Markov system on B, then it is a weak Markov
system on A _ B.

Proof. It is sufficient to see that, for each collocation matrix (2.4) with
{0< } } } <{n in A _ B, all minors using initial consecutive columns are
nonnegative.
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If necessary, we may add points in A & B until we have a sequence
t0< } } } <tm in A _ B such that [{0 , ..., {n]�[t0 , ..., tm], the points
t0 , ..., tk+l , l�n, are contained in A, and the points tk , ..., tm are contained
in B. Moreover, since Un is linearly independent on A & B, and [2,
Lemma 2.3] guarantees that the choice of the points t0 , ..., tm can be made
so that Un is linearly on [tk , ..., tk+l], it follows that the (m+1)_(n+1)
collocation matrix (2.3) has the following properties:

(i) All minors involving initial consecutive columns, and rows
chosen from those numbered 1, ..., k+l+1, are nonnegative.

(ii) All minors involving initial consecutive columns, and rows
chosen from those numbered k+1, ..., m+1, are nonnegative.

(iii) The rows k+1, ..., k+l+1 contain n+1 independent rows.

By Lemma 3.3 all the minors of (2.3) involving initial consecutive
columns are nonnegative. Since this property is inherited by the submatrix
(2.4), the conclusion readily follows. K

Remark 3.5. Every WT-space is a weak Markov space (cf. [12, 14,
19]).

Theorem 3.6. Let A, B�R be such that A"B<A & B<B"A. Let
Un /F(A _ B) be linearly independent on A & B. If Un is a TP-system on A
and a TP-system on B, then it is a TP-system on A _ B.

Proof. Clearly, for each sequence 0�i0< } } } <ik�n, (ui0
, ..., uik

) is a
Markov system on A and on B and (ui0

, ..., uik
) is linearly independent on

A & B. By Theorem 3.4, (ui0
, ..., uik

) is a weak Markov system on A _ B,
and the conclusion follows. K

The preceding result has a linear-algebraic interpretation:

Corollary 3.7. Let A be an m_n matrix with m�n, and let k, l be
integers such that l�n&1, k+l�m. Assume that

(i) The submatrix A[1, ..., k+l | 1, ..., n] is TP.

(ii) The submatrix A[k, ..., m | 1, ..., n] is TP.

(iii) rank A[k, ..., k+l | 1, ..., n]=n.

Then A is a TP matrix.

Now we need a matricial result, which is a generalization for rectangular
matrices of [7, Theorem 3.1]:
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Proposition 3.8. Let A be an m_n matrix, m � n, such that
det A[1, ..., k|1, ..., k]>0 for all 1�k�n. Then A is TP if and only if all
minors with initial consecutive columns or initial consecutive rows are non-
negative.

Proof. Since the leading principal minors are strictly positive, it is well
known that A=LU, where L is an m_m lower triangular matrix with
unit diagonal and U=(uij)1�i�m; 1� j�n is an m_n upper triangular matrix
with positive diagonal elements, that is, uii>0, 1�i�n, and uij=0 if i> j.
By Cauchy�Binet's formula, det A[: | 1, ..., k]=det L[: | 1, ..., k]u11 } } } ukk

for all : # Qk, m , k # [1, ..., m], and so det L[: | 1, ..., k]�0. Thus, using
[7, Theorem 3.1], we conclude that L is totally positive.

On the other hand det U[1, ..., k | ;]=det A[1, ..., k | ;] for all ; # Qk, n ,
k=1, ..., n, and we deduce again from [7, Theorem 3.1] that
U[1, ..., n | 1, ..., n] is totally positive. Since U[n+1, ..., m | 1, ..., n]=0, U

is also totally positive. In consequence, by [1, Theorem 3.1] A=LU is
totally positive. K

Theorem 3.9. Let A, B � R be such that A"B < A & B < B"A. Let
Un :=(u0 , ..., un) be a system of functions defined on A _ B such that Un is
linearly independent on A & B. If Un is a TP-system on A and a weak
Markov system on B, then it is a TP-system on A _ B.

Proof. By Theorem 3.4, Un is a weak Markov system on A _ B. In
order to prove that Un is a TP-system on A _ B, by [2, Lemma 2.3(ii)] it
is sufficient to show that any nonsingular collocation matrix M( u0 , ..., un

{0 , ..., {n
),

{0< } } } <{n in A _ B, is TP. We may add points in A & B until we obtain
a sequence t0< } } } <tm in A _ B such that [{0 , ..., {n]�[t0 , ..., tm],
t0 , ..., tn # A.; Furthermore, since Un is linearly independent in A & B,
applying [2, Lemma 2.3(i)] we see that the points t0 , ..., tm can be chosen
so that Un is linearly independent on [t0 , ..., tn]. Let H :=M( u0 , ..., un

t0 , ..., tm
).

Since M( u0 , ..., un
t0 , ..., tn

) is a nonsingular TP matrix, we deduce from [1,
Corollary 3.8] that

0<det M \u0 , ..., uk

t0 , ..., tk +=det H[1, ..., k+1 | 1, ..., k+1].

Moreover, all minors of H using initial consecutive rows are nonnegative
because Un is a TP-system on A and all minors of H using initial con-
secutive columns are nonnegative because Un is a weak Markov system
on A _ B. By Proposition 3.8, H is TP, and therefore also M( u0 , ..., un

{0 , ..., {n
)

is TP. K

Remark 3.10. The properties of Un on A and on B in the previous
theorem are not interchangeable (see Remark 2.11).
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4. EXTENDING THE DOMAIN OF DEFINITION OF
T-SYSTEMS AND SPACES

Definition 4.1. Let U� /F(B) be a vector space. If A�B, U is the
space formed by the restrictions of U� to A, and dim U� =dim U, we say
that U� is an extension of U to B. Let Un be a basis of U. If there exists an
extension U� of U to B and u~ i # U� are functions such that, for 0�i�n, the
restriction of u~ i to A is precisely ui , we shall say that U� n is an extension of
Un to B, and that Un can be extended to B.

The following proposition is a straightforward consequence of Theorems
2.6 and 2.9:

Theorem 4.2. Let A, B, C be such that A<B<C and let Un /F(B).
Then:

(i) If Un is a Markov system on B and can be extended as a Markov
system to A _ B and to B _ C, then Un can be extended as a Markov system
to A _ B _ C.

(ii) If Un is an STP-system on B and can be extended as an
STP-system to A _ B and as a Markov system to B _ C, then Un can be
extended as an STP-system to A _ B _ C.

Theorem 4.2 means that extending to the left of the domain and to the
right of the domain leads to an extension to both sides.

In [18, 21], results on the extensibility of Markov systems to larger
domains were obtained for systems defined on domains satisfying property
(B), i.e., sets A such that between any two points of A there is a third point
of A. The results obtained were of such a nature, that the systems could be
extended to arbitrary sets. On the other hand, the results of [3] do not
require the domains of definition to satisfy property (B), but the largest
domain to which these systems can be extended is determined by the
original domain of definition. Both sets of results are generalized forthwith.

Much of the discussion in the remainder of the paper is based on the
following

Proposition 4.3. Let Un /F(B) be a TP (STP)-system with b1 :=
inf B>&�. Then the system U� n given by

u~ i (t) :={(t&b1) i

ui (t)
if t # (&�, b1]"B,
if t # B,

0�i�n, is a weak Markov (a Markov) system on (&�, b1] _ B.
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Proof. We may assume without loss of generality that b1=0. It is suf-
ficient to show that each collocation matrix

M \u~ 0 , ..., u~ k

{0 , ..., {k + , {0< } } } <{k in (&�, b1] _ B, k # [0, ..., n],

has nonnegative (positive) determinant. If all the {i are in (&�, b1]"B or
all the {i are in B there is nothing to prove. Assume otherwise. Let
l # [0, ..., k&1] be such that {0 , ..., {l # (&�, b1]"B and {l+1, ..., {k # B.
Then the collocation matrix is of the form

1 {0 } } } {k&1
0 {k

0

1 {1 } } } {k&1
1 {k

1

b b b b

M \u~ 0 , ..., u~ k

{0 , ..., {k += 1 {l } } } {k&1
l {k

l .

u0({l+1) u1({l+1) } } } uk&1({l+1) uk({l+1)

b b b b

u0({k) u1({k) } } } uk&1({k) uk({k)

If we substract from each column of this matrix the previous column multi-
plied by {0 we obtain the matrix

1 0 } } } 0

1 {1&{0 } } } {k&1
1 ({1&{0)

b b b

1 {l&{0 } } } {k&1
l ({l&{0)

u0({l+1) u1({l+1)&{0u0({l+1) } } } uk({l+1)&{0uk&1({l+1)

b b b

u0({k) u1({k)&{0u0({k) } } } uk({k)&{0uk({k&1)

which has the same determinant, that is

det M\u~ 0 , ..., u~ k

{0 , ...{k +=({1&{0) } } } ({l&{0) det H,
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where

1 {1 } } } {k&1
1

b b b

H :=\ 1
u1({l+1)&{0 u0({l+1)

{l

} } }
} } }
} } }

{k&1
l

uk({l+1)&{0uk({l+1)+ .

b b
u1({k)&{0u0({k&1) } } } } } } uk({k)&{0uk({k&1)

The last k&l rows of H form a TP (STP) matrix because we have added
to each column a positive multiple of the previous one. In the next step we
substract from each column of H the previous one multiplied by {1 ,
obtaining (1, 0, ..., 0) as first row. This process can be continued until we
obtain

det M \u~ 0 , ..., u~ k

{0 , ..., {k += `
0� j<i�l

({i&{j) } det K,

where K is still a TP (STP) matrix. So, det M( u~ 0 , ..., u~ k
{0 , ..., {k

)�0 (resp., >0.
Therefore (u~ 0 , ..., u~ n) is a weak Markov system (resp., a Markov
system). K

Theorem 4.4. Assume there is a set T :=[{0 , ..., {n]/A such that
{0<{1< } } } <{n , and T<A"T. If Vn /F(A) is an STP-system on T and a
Markov system on A, it is an STP-system on A.

Proof. From Proposition 4.3 the restriction of Vn to T can be extended
to a Markov system on A1 :=(&�, {0) _ T. Since A1 & A=T has n
points, we infer from Theorem 2.6 that Vn can be extended to a Markov
system on (&�, {0) _ A. Applying Theorem 2.9, the conclusion follows. K

A nonsingular matrix A is called lowerly strictly totally positive (LSTP)
if it can be written in the form A=LDU, where L is a lower triangular
2STP-matrix with unit diagonal, D is a diagonal matrix with positive
diagonal entries, and U is an upper triangular TP matrix with unit
diagonal (see [7]).

Theorem 4.5. Let S/F(A) be a Markov space in A, and assume there
is a set T :=[{0 , ..., {n]/A such that {0<{1< } } } <{n , and T<A"T. Then
S is an STP-space on A. Moreover, every Markov basis Un of S may be
obtained from an STP basis Vn of S by means of triangular transformation.
That is, there is an upper triangular matrix U with unit diagonal, such that
Un=Vn U.
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Proof. Let Un be any basis of S that is a Markov system on A, and let
H be the matrix defined by (2.4). By [6, Proposition 4.3] H is an LSTP
matrix. Hence, H=LDU, where L is a lower triangular 2STP-matrix
with unit diagonal, D is a diagonal matrix with positive diagonal entries,
and U is an upper triangular TP-matrix with unit diagonal. Let
Vn :=Un U&1Un(1), where Un(1) is the matrix defined in (3.3) for ==1.
Clearly Vn is a Markov system and a basis of S, and

M \v0 , ..., vn

{0 , ..., {n +=LDUn(1).

Since LD is a 2STP lower triangular matrix and Un(1) is a 2STP upper
triangular matrix, by [5, Theorem 1.1] LDUn(1) is an STP-matrix and so
Vn is an STP-system on T. From Theorem 4.4 Vn is an STP-system on A,
and the conclusion follows. K

Let I(A) denote the convex hall of A (thus, for example, if A :=[1, 2) _
(3, �), then I(A)=[1, �)). We have:

Definition 4.6. Zn /F(A) is representable if for all c # A there is a
basis Un of S(Zn), obtained from Zn by a triangular transformation (i.e.,
u0(x)=z0(x) and ui&zi # S(Zi&1), 1�i�n); a strictly increasing function
h (an ``embedding function'') defined on A with h(c)=c; and a set
Pn :=[ p1 , ..., pn] of continuous, increasing functions defined on I(h(A)),
such that for any x # A

u1(x)=u0(x) |
h(x)

c
dp1(t1)

b (4.1)

un(x)=u0(x) |
h(x)

c
|

t1

c
} } } |

tn&1

c
dpn(tn) } } } dp1(t1).

In this case we say that (h, c, Pn , Un) is a representation of Zn . A linear
space S is called representable, if it has a representable basis, and
(h, c, Pn , Un) will be called a representation for S, if it is a representation
for some basis of S.

Definition 4.7. Let n�1, let Pn :=[ p1 , ..., pn] be a sequence of real-
valued functions defined on (a, b), let h be a real-valued function defined
on A with h(A)/(a, b), and let x0< } } } <xn be points of h(A). We say
that Pn satisfies property (M) with respect to h at x0< } } } <xn if there is
a double sequence [ti, j : i=0, ..., n; j=0, ..., n&i] such that

425STRICTLY TOTALLY POSITIVE SYSTEMS



File: DISTIL 313216 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 2797 Signs: 1775 . Length: 45 pic 0 pts, 190 mm

(i) xj=t0, j ; j=0, ..., n.

(ii) ti, j<ti+1, j<ti, j+1; i=0, ..., n&1, j=0, ..., n&i&1.

(iii) For i=1, ..., n, and j=0, ..., n&i, pi (x) is not constant at ti, j .

When we say that a function f is not constant at a point c # (a, b) we
mean that for every =>0 there are points x1 , x2 # (a, b) with c&=<
x1<c<x2<c+=, such that f (x1){ f (x2).

If Pn satisfies property (M) with respect to h for every choice of points
x0< } } } <xn in h(A), then we simply say that Pn satisfies property (M)
with respect to h on A. By an endpoint of A we mean either inf(A) or
sup (A).

Remark 4.8. The correct statement of [20, Theorem 1] is that if A does
not contain its endpoints, and Zn /F(A), then Zn is a Markov system on
A if, and only if, Zn has a representation (h, c, Pn , Un) such that u0>0
on A, and Pn satisfies property (M) with respect to h on A. (In [20], the
condition ``u0>0'' was omitted.)

The following proposition was mentioned in [17, p. 2]. Since it will play
an important role in the subsequent discussion, it is appropriate at this
point to state it carefully and to give a proof.

Lemma 4.9. Let Zn /F(A), and c, d # A. Assume that (h, c, Pn , Un) is a
representation of Zn , where the functions ui are given by (4.1). If
g(x) :=h(x)&h(d )+d, v0 :=u0 , qi (t) :=pi (t+h(d )&d ), 1�i�n, and

v1(x)=v0(x) |
g(x)

d
dq1(t1)

b

vn(x)=v0(x) |
g(x)

d
|

t1

d
} } } |

tn&1

d
dqn(tn) } } } dq1(t1),

then:

(a) Also (g, d, Qn , Vn) is a representation of Zn .

(b) Let x0< } } } <xn be points of h(A) such that Pn satisfies property
(M) with respect to h at [h(xi)]n

i=0. Then Qn satisfies property (M) with
respect to g at [g(xi)]n

i=0.

Proof. (a) Since I(g(A))=d&h(d )+I(h(A)), it is clear that Qn is
defined on I(g(A)). We need to show that Vn can be obtained from Un by
a triangular transformation. We may assume, without essential loss of
generality, that u0=1.
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Let e :=d&h(d), w~ 1 :=1, y~ 1 :=1,

w~ i (x) :=|
x

c
|

t1

c
} } } |

ti&2

c
dpi (ti&1) } } } dp2(t1), 1�i�n,

y~ i (x) :=|
x

d
|

t1

d
} } } |

ti&2

d
dqi (ti&1) } } } dq2(t1), 2�i�n,

wi (x) :=|
x

c
w~ i (t) dp1(t), 1�i�n,

yi (x) :=|
x

d
y~ i (t) dq1(t), 1�i�n.

Let ri (t) :=yi (t+e). We first show that Rn may be obtained from Wn by
a triangular transformation. We proceed by induction. The assertion is
clearly true for n=1. To prove the inductive step we proceed as follows.
Let 1�i�n. Then:

ri (x)=|
x+e

d
y~ i (t) dq1(t)=|

x

h(d )
y~ i (t+e) dp1(t)=ai, 0+|

x

d
y~ i (t+e) dp1(t).

However, by inductive hypothesis,

y~ i (t+e)=w~ i (t)+ :
i&1

r=1

ai, rw~ r(t), 1�i�n. (4.2)

Integrating both sides of the preceding identity with respect to dp1(t), the
assertion follows.

The proof of (a) is now completed by noting that

ui (x)=|
h(x)

d
w~ i (t) dp1(t),

vi (x)= yi[ g(x)]=|
h(x)+e

d
y~ i (t) dq1(t)

=|
h(x)

h(d )
y~ i (t+e) dp1(t)=bi, 0+|

h(x)

d
y~ i (t+e) dp1(t),

and integrating both sides of (4.2) with respect to dp1(t).
The proof of (b) is trivial and will be omitted. K

We also need the following:

427STRICTLY TOTALLY POSITIVE SYSTEMS



File: DISTIL 313218 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 2716 Signs: 1569 . Length: 45 pic 0 pts, 190 mm

Lemma 4.10. Let Un /F(A) be a set of linearly independent functions
having a representation of the form (4.1) with c=inf(A), where h is a strictly
increasing function defined on A with h(x)=c; and the [ p1 , ..., pn] are con-
tinuous and increasing functions defined on I(h(A)). Assume, moreover, that
inf(A) # A, and that u0>0 on A. Then Un is a TP-system on A.

Proof. Let g0 #1 and, for any x # A,

g1(x)=|
h(x)

c
dp1(t1)

b

gn(x)=|
h(x)

c
|

t1

c
} } } |

tn&1

c
dpn(tn) } } } dp1(t1).

Since ui=u0 } gi , 0�i�n, it is clear that the functions in Gn are linearly
independent. Repeating the procedure described in [18, p. 205] we readily
see that Gn is a TP-system, whence the assertion follows. K

Definition 4.11. Let inf(A) be a density point of A. Zn /F(A) is called
a canonical system if it is a T-system on A, and

lim
t � inf(A)

zi (t)
zi&1(t)

=0, 1�i�n.

If, in addition, sup (A) is a density point of A, and

lim
t � sup(A)

zi&1(t)
zi (t)

=0, 1�i�n,

then Zn is called a bicanonical system. The linear span of a canonical
system is called a canonical space, and the linear span of a bicanonical
system is called a bicanonical space.

These definitions slightly generalize those introduced in [3].
Let A& :=[t : &t # A]. If Zn /F(A), then Z*

n :=(z&
n , ..., z&

0 ), where
z&

i (t) :=zi (&t). Thus, Z*
n /F(A&). If S/F(A), then S& :=[ f (t) :

f (&t) # S]/F(A&). Since Zn is a T-system on A if and only if Z*
n is a

T-system on A&, we have:

Lemma 4.12. (i) Un is a bicanonical system if and only if U *
n is a

bicanonical system.

(ii) Un is a T-system if and only if U *
n is a T-system.

(iii) Un is an STP-system if and only if U *
n is an STP-system.
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Conclusions like those of Lemma 4.12 do not hold for Markov systems,
as the simple example of [1, t] on (&1, 1) shows (cf. [3]).

The following statement will be used often in the sequel. This result was
shown in [4]. A proof is included for the reader's convenience.

Proposition 4.13 [4, Proposition 3.3]. Let S�F(A) be an
(n+1)-dimensional T-space of functions. Let B be a set disjoint with
I(A), |B|�n+1. If S can extended to a T-space S� on A _ B then S is an
STP-space.

Proof. Let {0 , ..., {n # B. Since B & I(A)=< we have

{0< } } } <{k<t<{k+1< } } } <{n

for all t # A. Since S� is a T-space, there exist basic functions for the
Lagrange interpolation problem

li ({j)=$ij , \i, j # [0, 1, ..., n].

Let us define

wi :={(&1) i lk&i ,
(&1)n&i ln+k+1&i ,

i=0, ..., k
i=k+1, ..., n.

Let us see that (w0 , ..., wn) is an STP-system on A. We have that
(w0 , ..., wn) is a T-system because it is a basis of S� and the determinant of
the matrix

(&1)k

. . .

&1
1

M \w0 , ..., wn

{0 , ..., {n +=
1

&1
. . .

(&1)n&k&1

is equal to 1.
It remains to see that det M( wi

0
, ..., wi

m
t0 , ..., tm

) with m<n is positive for all
i0< } } } <im in [0, ..., m] and t0< } } } <tm in A. Let j1 , ..., jn&m be the
complementary indices to i0 , ..., im , that is,

[i0 , ..., im] _ [ j1 , ..., jn&m]=[0, 1, ..., n].
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Let us define

j $i :={k& ji ,
n+k+1& ji ,

if ji�k,
if ji�k+1.

Then the determinant of the collocation matrix of w0 , ..., wn at the points
t0 , ..., tm , {j $1

, ..., {j $n&m
(which must be put in order) is positive and it can be

seen to be equal to

det M \wi0
, ..., wim

t0 , ..., tm + .

Therefore the restrictions of wi , i=0, ..., n, to A form an STP-basis
of S. K

Theorem 4.14. Let S/F(B) be a linear space, and consider the follow-
ing propositions:

(i) S is an STP-space.

(ii) S can be extended to an STP-space on (&�, b1] _ B.

(iii) S can be extended to an STP-space on B _ [b2 , �).

(iv) S can be extended to an STP-space on (&�, b1] _ B _ [b2 , �).

Then:

(a) If b1 :=inf B>&�, then (i) and (ii) are equivalent.

(b) If b2 :=sup B<�, then (i) and (iii) are equivalent.

(c) If B is bounded, then (i), (ii), (iii), and (iv) are equivalent.

Proof. We will prove (c), since the other cases have similar proofs.
(i) O (iv): Making an arctan change of variable, we may assume that
&?�2<b1<b2<?�2. It will suffice to extend the space to an STP-space
on (&?�2, b1) _ B _ [b2 , ?�2), and then reverse the change of variable.
By Proposition 4.3, S can be extended to a Markov space S1 on
(&�, b1] _ B. Applying Proposition 4.13, we conclude that the restriction
S2 of S1 to C :=(&?�2, b1) _ B is an STP-space. From Lemma 4.12 we
know that S&

2 is an STP-space on C&. Repeating the above procedure we
see that S&

2 can be extended to an STP-space on (&?�2, b2) _ C &. Since
(S&)&=S, the conclusion follows by another application of Lemma 4.12.

(iv) O (ii), (iv) O (iii), (ii) O (i), and (iii) O (i) are trivial. K

We can now prove:
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Theorem 4.15. Let S/F(B) be a linear space of dimension n+1, and
assume that b1 :=inf(B)>&� and that b1 is a density point of B. Consider
the following propositions:

(i) S is an STP-space.

(ii) S can be extended to a T-space S1 on (&�, b1] _ B such that
every element of S1 is infinitely differentiable on (&�, b1) and left-con-
tinuous at b1 .

(iii) S can be extended to a T-space S2 on (&�, b1] _ B such that
every element of S2 is infinitely differentiable on (&�, b1), and continuous
at b1 .

(iv) For any set A<B, S can be extended to a T-space on A _ B.

(v) There is a set A<B, containing at least n+1 points, such that S

can be extended to a T-space on A _ B.

Then:

(a) (i), (ii), (iv), and (v) are equivalent.

(b) If all the elements of S are continuous at b1 , then (i), (ii), (iii),
(iv), and (v) are equivalent.

Proof. (i) O (ii) and (i) O (iii). From Theorem 4.14, S can be extended
to a Markov space S1 defined on a set C that does not contain its
endpoints. In view of Remark 4.8, we conclude that S1 has a representation
(h, b1 , Pn , Un) such that Pn satisfies property (M) with respect to h, and
u0>0 on C. Since Un satisfies (4.1) with c=b1 , applying Lemma 4.10 we
deduce that Un is a TP-system on D :=C & (b1 , �). It is also a T-system
on D. Since b1 is a density point by hypothesis, we conclude that D does
not contain its endpoints and therefore [3, Proposition 2.6] implies that
Un is an STP-system on D.

Let

w0(t) :={u0(b1)
u0(t)

if t # (&�, b1],
if t # D,

(4.3)

and, for 1�i�n,

wi (t) :={(t&b1) i

ui (t)
if t # (&�, b1],
if t # D.

(4.4)

Since b1=inf(D), as in Proposition 4.3 we see that Wn is a Markov system
on (&�, b1] _ D=(&�, b1] _ C. However, since h(b1)=b1 , it is clear
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that ui (b1)=0, 1�i�n, and that wi=ui on B, for 0�i�n (whence con-
tinuity from the left at b1 follows). Moreover, if continuity of the elements
of S at b1 is assumed, then limt � b

1
+ ui (t)=0, 1�i�n.

(ii) O (iv), (iii) O (iv), and (iv) O (v) are trivial; (v) O (i) follows from
Proposition 4.13. K

Remark 4.16. (i) Parts of this result are similar to [8, Lemma 5],
which was formulated for generalized T-systems, i.e., systems Un for which
the determinants of the collocation matrices in (2.1) are merely nonzero.

(ii) Applying Lemma 4.12, it is easy to obtain variations of
Theorem 4.15 for the cases where B is either bounded from above, or
bounded.

5. EXTENDING THE DOMAIN OF DEFINITION OF
WT-SYSTEMS AND SPACES

Now let us show how some of the previous results can be generalized
to weak T-systems. In fact, the next result is the counterpart of [3,
Theorem 5.3] and Proposition 4.13 for weak T-systems.

Proposition 5.1. Let S/F(A) be an n+1-dimensional weak T-space.
Let B be a set disjoint with I(A), |B|�n+1. If S can be extended to a weak
T-space S� on A _ B such that dim S$=n+1, where S$ denotes the restric-
tion of S� to B, then S is a TP-space.

Proof. Let {0 , ..., {n # B such that the restriction of S$ to [{0 , ..., {n] has
dimension n+1. Let li be the basic functions for the Lagrange interpolation
problem

li ({j)=$ij , i, j=0, ..., n.

Since B & I(A)=<, we have that

{0< } } } <{k<t<{k+1< } } } <{n , \t # A.

Let us define

wi :={(&1) i lk&i ,
(&1)n&i ln+k+1&i ,

i=0, ..., k,
i=k+1, ..., n.

Proceeding now as in the proof of Proposition 4.13, we conclude that Wn

is a TP-system. K

The following proposition is a straightforward consequence of Theorems
3.4 and 3.9.

432 CARNICER, PEN� A, AND ZALIK



File: DISTIL 313223 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 2825 Signs: 1919 . Length: 45 pic 0 pts, 190 mm

Theorem 5.2. Let A, B, C be such that A<B<C and let Un /F(B) be
linearly independent on B. Then:

(i) If Un is a weak Markov system on B and can be extended as a
weak Markov system to A _ B and to B _ C, then Un can be extended as a
weak Markov system to A _ B _ C.

(ii) If Un is a TP-system on B an can be extended as a TP-system to
A _ B and as a weak Markov system to B _ C, then Un can be extended as
a TP-system to A _ B _ C.

We have the following counterpart of Lemma 4.12:

Lemma 5.3. (i) Un is a WT-system if and only if U *
n is a WT-system.

(ii) Un is a TP-system if and only if U *
n is a TP-system.

Remark 5.4. Any TP-system on A can be extended to a larger domain
A _ B, A & B=<, by defining the values of each of the functions as zero
on B. This kind of extension can be also performed for weak Tchebycheff
and weak Markov systems.

A less trivial kind of problem than the one discussed in the previous
remark requires that the extensions also be linearly independent on B. In
the next result we show how to extend a TP-space to a weak Markov space
so that the functions in a basis be linearly independent on the additional
points. This result extends Proposition 4.13 to WT-spaces and is an analog
of Theorem 4.14:

Theorem 5.5. Let S/F(B) be a linear space of dimension n+1, and
consider the following propositions:

(i) S is a TP-space.

(ii) S can be extended to a TP-space S1 on (&�, b1] _ I(B), and
the restriction of S1 to (&�, b1) is a Markov space of dimension n+1.

(iii) S can be extended to a TP-space S2 on I(B) _ [b2 , �), and the
restriction of S2 to (b2 , �) is a Markov space of dimension n+1.

(iv) S can be extended to a TP-space S3 on (&�, �), and the
restriction of S3 to each of the sets (&�, b1) and (b2 , �) is a Markov space
of dimension n+1.

Then:

(a) If b1 :=inf B>&�, then (i) and (ii) are equivalent.
(b) If b2 :=sup B<�, then (i) and (iii) are equivalent.

(c) If B is bounded, then (i), (ii), (iii), and (iv) are equivalent.
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Proof. We will prove (c), since the other cases have a similar proof.
Assume (i) is satisfied, and let Un /S be a TP-system. Let

vi (t) :={ui (t),
0,

if t # B
if t # I(B)"B.

Clearly Vn is a TP-system on I(B). The rest of the proof is identical to
that of Theorem 4.14, using Lemma 5.1 instead of Proposition 4.13, and
Lemma 5.3 instead of Lemma 4.12. The details will be omitted. K

We now need the following auxiliary proposition:

Lemma 5.6. Let A<B, and assume that Un is a TP-system on A _ B
such that u0 does not vanish identically on B. If for some t # A, u0(t)=0, then
ui (t)=0, for 1�i�n.

Proof. The hypotheses imply that there is a point t1 # B, such that
u0(t1)>0. Thus,

0� } u0(t), u0(t1)
ui (t), ui (t1) }=&u0(t1) ui (t).

Since ui (t)�0, the conclusion follows. K

Remark 5.7. Not every TP-system is representable. For example, the
system U1 given by

u0(t) :={1 if t # [0, 2],
0 if t # (2, 3],

u1(t) :={0 if t # [0, 1)
1 if t # [1, 3]

is TP in [0, 3], but u0 vanishes at points where u1 does not, and therefore
U1 cannot be representable.

However, we have:

Theorem 5.8. Assume B contains at least one of its endpoints, which we
will denote by b, and let Un /F(B) be a TP-system such that u0(b)>0, if
b=sup B, and un(b)>0, if b=inf B. Then Un is representable, and for every
representation (h, c, Pn , Zn) of Un , there is a set t0<t1< } } } <tn of points
of B, containing b, such that Pn satisfies property (M) with respect to h at
[h(ti)]n

i=0 , and u0(ti)>0, 0�i�n.

Proof. Applying if necessary Lemma 5.3 we may assume, without essen-
tial loss of generality, that b=b2 :=sup(B). Making if necessary an arctan
change of variable we may also assume that b1 :=inf(B)>&� and
b2<�. Let C :=[t # B: u0(t)>0]. With an argument similar to that given
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in the proof of Theorem 4.14, we may apply Proposition 4.3, Proposi-
tion 5.1 (instead of Proposition 4.13), and Lemma 5.3 (instead of
Lemma 4.12) to deduce that Un can be extended to a weak Markov system
Vn defined on D :=(&�, b1] _ C _ [b2 , �), having the property that for
every d # D, the restrictions of Vn to (&�, d] & D and to [d, �) & D are
linearly independent. Applying [24, Theorem 3] we conclude that for every
d # D, Vn has a representation (h, d, Pn , Wn).

We now extend h(t) to a strictly increasing function q(t) on (&�, �).
Let D� denote the closure of D. If t # D, q(t) :=h(t). If t # D� "D we consider
two cases: if t=sup[s: s # (&�, t) & D], we set q(t) :=sup[h(s) : s #
(&�, t) & D]. Otherwise, set q(t) :=inf[h(s): s # (t, �) & D]. To extend
q(t) to the complementary set of D� note that this set is open, and is there-
fore the union of a countable collection of disjoint open intervals (a, b)
with a, b # D� . For any such interval define q(t) by linear interpolation:
q(t) :=:q(a)+(1&:)q(b), where t=:a+(1&:) b.

Let g(t) denote the restriction of q(t) to B, and define

ri (t) :={vi (t),
0,

if t # C
if t # B"C,

and

zi (t) :={wi (t),
0,

if t # C
if t # B"C.

Since g(t) is strictly increasing, Lemma 5.6 implies that (g, d, Pn , Zn) is a
representation of Un . We observe that for any such representation the func-
tions in Zn are linearly independent and z0=u0 . Thus, there exists a non-
singular collocation matrix M( z0 , ..., zn

t0 , ..., tn
) for points t0< } } } <tn in C. By the lemma

of [20], Pn satisfies property (M) with respect to h at [h(t0), ..., h(tn)]. The
assertion now follows from the elementary observation that, if Pn satisfies
property (M) with respect to h at [h(t0), ..., h(tn&1), h(tn)], it also satisfies
property (M) with respect to h at [h(t0), ..., h(tn&1), h(b)]. K

We have the following counterpart of Theorem 4.15:

Theorem 5.9. Let S/F(B) be a linear space of dimension n+1, and
assume that b1 :=inf(B)>&�. Consider the following propositions:

(i) S is a TP-space.

(ii) S can be extended to a weak T-space S1 on (&�, b1) _ B such
that every element of S1 is infinitely differentiable on (&�, b1) and left-
continuous at b1 , and the restriction of S1 to (&�, b1) is a T-space.

435STRICTLY TOTALLY POSITIVE SYSTEMS



File: DISTIL 313226 . By:CV . Date:25:02:98 . Time:15:01 LOP8M. V8.B. Page 01:01
Codes: 2783 Signs: 2031 . Length: 45 pic 0 pts, 190 mm

(iii) S can be extended to a weak T-space S2 on (&�, b1) _ B such
that every element of S2 is infinitely differentiable on (&�, b1) and con-
tinuous at b1 , and the restriction of S2 to (&�, b1) is a T-space.

(iv) For any set A<B containing at least n+1 points, S can be
extended to a WT-space S4 on A _ B, and the restriction of S4 to any set of
n+1 points in A is a T-space.

(v) There is a set A<B, containing at least n+1 points, such that S

can be extended to a WT-space S5 on A _ B, and the restriction of S5 to any
set of n+1 points in A is a T-space.

Then:

(a) (i), (ii), (iv), and (v) are equivalent.

(b) If b is a density point of B, and all the elements of S are con-
tinuous at b, then (i), (ii), (iii), (iv), and (v) are equivalent.

Proof. (i) O (ii) and (i) O (iii). Making if necessary an arctan change
of variable, we may assume without essential loss of generality that
b2 :=sup(B)<�. Applying Theorem 5.5 we conclude that S can be
extended to a TP-space S1 on (&�, �), and the restriction of S1 to
(b2 , �) is a Markov space of dimension n+1. Let Vn /S1 be a TP-system.
Since v0 does not vanish identically on (b2 , �), there is a point b3>b2

such that v0(b3)>0. Thus, applying Theorem 5.8 to the restriction of S1 to
(&�, b3), we conclude that S has a representation (h, b1 , Pn , Un) such
that the linear span of Un has dimension n+1. The Lemma of [20] implies
that there is a set t0<t1 ...<tn of points of B, such that Pn satisfies property
(M) with respect to h at [h(ti)]n

i=0 , and u0(ti)>0, 0�i�n. Since Un

satisfies (4.1), applying Lemma 4.10 we see that Un is a TP-system on B.
If Wn is defined as in the proof of Theorem 4.15, the conclusion readily
follows.

(ii) O (iv), (iii) O (iv), and (iv) O (v) are trivial; (v) O (i) follows from
Proposition 5.1. K

Remark 5.10. Applying Lemma 5.3, it is easy to obtain variations
of Theorem 5.9 for the cases where B is either bounded from above, or
bounded.

6. SOME PROPERTIES OF STP-SYSTEMS AND BASES

Let b1 and b2 denote the endpoints of B, i.e., inf(B) and sup(B), respec-
tively. We have:
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Theorem 6.1. Let S/F (B) be an n+1-dimensional space. Assume that
if an endpoint of B belongs to B, then all the functions in S are continuous
at that point. Let C denote any of the sets B"[b1], B"[b2], or B"[b1 , b2],
and let D :=B"C. Then the following propositions are equivalent:

(i) S is an STP-space.

(ii) The restriction of S to C is an STP-space, and for any d # D, not
all the functions in S vanish at d.

Proof. It suffices to assume that C=B"[b1]. The other two cases will
follow from Lemma 4.12.

Let S1 denote the restriction of S to D, and assume the hypotheses of
(ii) are satisfied. Applying if necessary Theorem 4.14 we may assume,
without essential loss of generality, that b2 � B. Passing to the limit we
readily see that S is a TP-space. Since D does not contain its endpoints,
we know from [3, Corollary 4.8] that S1 has a basis Un that is both
canonical and a Markov system. Since not all the functions in Un vanish
at b1 , we deduce that u0(b1)>0 and ui (b1)=0, 1�i�n. Thus Un is a
T-system on B, and the conclusion follows from [3, Proposition 2.3]. K

Although [3, Corollary 4.8] is stated for spaces defined on sets that do
not contain their endpoints, this restriction is not necessary. We have:

Theorem 6.2. Let S/F(B) be a T-space. Assume that B contains either
or both of its endpoints, and that if an endpoint of B belongs to B, then all
the functions in S are continuous at that endpoint. Let B0 :=B"[b1 , b2].
The following propositions are equivalent:

(i) S has a basis that is an STP-system.

(ii) S has a basis that is a bicanonical system.

(iii) S has a basis Un that is a bicanonical and STP-system on B0 .

(iv) S has a basis Un that is a canonical and Markov system on B0 ,
and is such that if b1 # B then u0(b1)>0, and if b2 # B then un(b2)>0.

Proof. Assume for instance that both endpoints belong to B. Let S0

denote the restriction of S to B0 . Applying [3, Corollary 4.8] to S0 , we
see that (i) O (ii).

Assume now that (ii) is satisfied. Then [3, Corollary 4.8] implies that S0

has a basis Un that is a bicanonical and STP-system on B0 . The hypotheses
imply that if an endpoint of B belongs to B, then not all the functions in
Un can vanish at that endpoint, and (iii) follows from Theorem 6.1.

Clearly (iv) is a trivial consequence of (iii).
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Let Un be a basis of S that satisfies the hypotheses of (iv). From [3,
Proposition 3.5] we deduce that Un is an STP-system on B0 , and (i)
follows from Theorem 6.1. K

7. INTEGRAL REPRESENTATION OF STP- AND TP-SYSTEMS

We have the following:

Theorem 7.1. Let S/F(B) be a linear space of dimension n+1, and
consider the following propositions:

(i) S is an STP-space.

(ii) For some c # B there is a representation (h, c, Pn , Un) of S such
that u0>0 on B, and Pn satisfies property (M) with respect to h on B.

(iii) For every c # B there is a representation (h, c, Pn , Un) of S such
that u0>0 on B, and Pn satisfies property (M) with respect to h on B.

Then (i) O (ii) O (iii). If B contains at least one of its endpoints, also
(iii) O (i).

Proof. (i) O (ii): By Theorem 4.14, S can be extended to an STP-space
defined on a set that contains neither its supremum nor its infimum. Apply-
ing Remark 4.8, the assertion follows. That (ii) implies (iii) follows from
Lemma 4.9.

Assume now that (iii) holds. If b1 :=inf(B) # B, the hypotheses imply
that S has a representation (h, c, Pn , Un) where Un satisfies (4.1), c=b1 ,
u0>0 on B, and Pn satisfies property (M) with respect to h on B. Let

g(x) :={h(x)
x+h(b1)&b1

if x # B,
if x<b1

,

w0(x) :={u0(x)
u0(b1)

if x # B,
if x<b1 ,

qi (x) :={pi (x)
x+ pi (b1)&b1

if x # B,
if x<b1 ,

and

w1(x)=w0(x) |
g(x)

b1

dq1(t1)

b

wn(x)=w0(x) |
g(x)

b1
|

t1

b1

} } } |
tn&1

b1

dqn(tn) } } } dq1(t1).
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It is readily seen that Wn satisfies property (M) with respect to g on
D :=(&�, b1) _ B. Since the lemma of [20] implies that Wn is T-system
on D, the conclusion follows from Theorem 4.15.

If b2 :=sup(B) # B, let v0(x) :=u0(&x), qi (x) :=& pi (&x), g(x) :=
&h(&x), and

vi (x) :=v0(x) |
g(x)

&b2
|

t1

&b2

} } } |
ti&1

&b2

dqi (ti) } } } dq1(t1).

Since

|
x

&c
f (&t) dqi (t)=|

x

c
f (t) dp(t),

we readily see that vi (x)=(&1) i ui (&x), 0�i�n. Thus also S& satisfies
the hypotheses of (iii). The assertion in this case now follows repeating for
S& the procedure described in the preceding paragraph, and then applying
Lemma 4.12. K

Remark 7.2. The implication (iii) O (i) in Theorem 7.1 is not valid if B
does not contain at least one of its endpoints: the system [1, t] defined on
(&�, �) clearly satisfies the conditions of Theorem 7.1(iii), but its linear
span is not an STP-space,

Theorem 7.3. Assume B contains at least one of its endpoints, which we
will denote by b, and let Un /F(B) be a set of linearly independent functions.
The following propositions are equivalent:

(i) Un is a TP-system, and u0(b)>0.

(ii) For some c # B there is a representation (h, c, Pn , Zn) of S(Un)
such that z0�0 on B, and a set t0<t1 ...<tn of points of B containing b, such
that u0(ti)>0, 0�i�n, and Pn satisfies property (M) with respect to h at
[h(ti)]n

i=0.

(iii) For every c # B there is a representation (h, c, Pn , Zn) of S(Un)
such that z0�0 on B, and a set t0<t1 ...<tn of points of B containing b, such
that u0(ti)>0, 0�i�n, and Pn satisfies property (M) with respect to h at
[h(ti)]n

i=0.

Proof. That (i) implies (ii) and that (ii) implies (iii) follow from
Theorem 5.8 and Lemma 4.9, respectively.

Assume that (iii) holds. If b1 :=inf(B) # B, by hypothesis there is a
representation (h, b1 , Pn , Zn) of S such that z0�0 on B, and a set
t0<t1< } } } <tn of points of B, such that z0(ti)>0, 0�i�n, and Pn

satisfies property (M) with respect to h at [h(ti)]n
i=0. The lemma of [20]
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therefore implies that Un is linearly independent on B. Since Un satisfies
(4.1) with c=inf(B), Lemma 4.10 implies that it is a TP-system on B.

If b2 :=sup (B) # B, proceeding as in the proof of Theorem 7.1 we see
that also S& satisfies the hypotheses of (iii). The assertion in this case
follows by repeating for S& the procedure described in the preceding
paragraph, and then applying Lemma 5.3. K
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